Europe’s Spaceport in Kourou, French Guiana, covers 700 square kilometres and comprises the launch range, three operational launch complexes with another under development for Ariane 6, and propellant manufacturing plants. Together they draw up to 20% of the country’s energy supplies.
About half the power at the base is used to cool buildings while energy-intensive solid and liquid propellant processes take up most of the rest. The yearly bill is several million euros.
ESA with France’s CNES space agency, plan to cut costs by reducing the reliance on the French Guiana grid and transitioning to ‘green’ and renewable energy sources on site.
These new energy sources are intended to provide 90% of the electricity consumed at the base by end-2025. On achieving this, Europe’s Spaceport would be well in advance of COP21 objectives to combat climate change.
The energy transition plan is based on two major pillars: the introduction of solar fields (up to 10 MW peak) delivering the first electron by the start of 2023, followed by two biomass units the same year with the intention of utilising the waste heat for cooling buildings. This mix could save about 50 GWh per year, reducing the carbon footprint by about 45 000 tonnes of carbon dioxide (CO2) equivalent.